

Assignment no 04: Chapter 4

Note: You can check the exercises after the book Chapter. In our assignment, we are using the first edition of "Signals and Systems: A MATLAB Integrated Approach" By Oktay Alkin.

Problems

4.2. Consider the pulse train shown in Fig. P.4.2.

Figure P. 4.2

- **a.** Determine the fundamental period T_0 and the fundamental frequency ω_0 for the signal.
- **b.** Find an approximation to $\tilde{x}(t)$ in the form

 $\tilde{x}^{(1)}(t) \approx a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t)$

Determine the optimum coefficients a_0 , a_1 and b_1 .

4.3. Consider again the pulse train shown in Fig. P.4.2.

Figure P. 4.2

Find an approximation to $\tilde{x}(t)$ in the form

 $\tilde{x}^{(2)}(t) \approx a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t) + a_2 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t)$

4.5. Consider the pulse train $\tilde{x}(t)$ shown in Fig. P.4.5.

Figure P. 4.5

- a. Determine the fundamental period T_0 and the fundamental frequency ω_0 for the signal.
- b. Determine the coefficients of the approximation

 $\tilde{x}^{(2)}(t) = a_0 + a_1 \cos(\omega_0 t) + a_2 \cos(2\omega_0 t)$

to the signal $\tilde{x}(t)$ that results in the minimum mean-squared error.

4.18. Find the Fourier transform of each of the pulse signals given below:

a.
$$x(t) = 3 \Pi(t)$$

c. $x(t) = 2 \Pi\left(\frac{t}{4}\right)$

4.21. Refer to the signal shown in Fig. P.4.19.

Figure P. 4.19

Find its Fourier transform by starting with the transform of the unit pulse and using <u>linearity</u> and <u>time shifting</u> properties.

4.24. Consider the following transform pair

$$e^{-a|t|} \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{2a}{a^2 + \omega^2}$$

Using this pair along with the <u>duality property</u>, find the Fourier transform of the signal

$$x(t) = \frac{2}{1+4t^2}$$

4.38. Determine and **sketch** the power spectral density of the following signals:

a.
$$x(t) = 3 \cos (20\pi t)$$

b. $x(t) = 2 \cos (20\pi t) + 3 \cos (30\pi t)$
c. $x(t) = 5 \cos (200\pi t) + 5 \cos (200\pi t) \cos (30\pi t)$

Examples

Example 4.1: A pulse-train signal $\tilde{x}(t)$ with a period of $T_0 = 3$ seconds is shown in Fig. 4.5. **Determine** the coefficients of the TFS representation of this signal.

Example 4.2: Approximate the periodic pulse train of Example 4.1 using

- **a.** The first 4 harmonics.
- **b.** The first 10 harmonics.

Example 4.3: Determine the TFS coefficients for the periodic pulse train shown in Fig. 4.7.

Figure 4.7 – The periodic pulse train used in Example 4.3.

Example 4.5: Determine the EFS coefficients of the signal $\tilde{x}(t)$ shown in Fig. 4.7.

Figure 4.7 – The periodic pulse train used in Example 4.3.

Example 4.9: Determine the EFS coefficients and **graph** the line spectrum for the multi-tone signal shown in Fig. 4.19.

 $\tilde{x}(t) = \cos\left(2\pi \left[10f_0\right]t\right) + 0.8\,\cos\left(2\pi f_0 t\right)\,\cos\left(2\pi \left[10f_0\right]t\right)$

Figure 4.19 – Multi-tone signal of Example 4.9.

Example 4.12: Using the forward Fourier transform integral, **find** the Fourier transform of the isolated rectangular pulse signal shown in Fig. 4.35.

Figure 4.35

Example 4.15: Determine the Fourier transform of the right-sided exponential signal

$$x\left(t\right) = e^{-at} u\left(t\right)$$

with a > 0 as shown in Fig. 4.43.

Figure 4.43 – Right-sided exponential signal.

Example 4.16: Determine the Fourier transform of the two-sided exponential signal given by

$$x\left(t\right) = e^{-a|t|}$$

where *a* is any non-negative real-valued constant. The signal x(t) is shown in Fig. 4.46.

Figure 4.46 – Two-sided exponential signal x(t).

Example 4.39: Find the power spectral density of the signal $\tilde{x}(t) = 5\cos(200\pi t)$.